

ECSS-E-ST-50-15C Protocol On-Board SW Implementation Doc. CAN-N7S-UM-21002

Test Suite – Software User Manual Date: 2021-11-26

 Issue: 1.3

N7 Space Sp. z o.o. Page: 1 of 29

Copyright 2022 N7 Space Sp. z o. o.

Prepared by Date and Signature

Konrad Grochowski

Verified and approved by

Michał Mosdorf

ECSS-E-ST-50-15C Protocol
On-Board SW Implementation

Test Suite – Software User Manual

CAN-N7S-UM-21002 rev. 1.3

N7 SPACE SP. Z O.O.

ECSS-E-ST-50-15C Protocol On-Board SW Implementation Doc. CAN-N7S-UM-21002

Test Suite – Software User Manual Date: 2021-11-26

 Issue: 1.3

N7 Space Sp. z o.o. Page: 2 of 29

Copyright 2022 N7 Space Sp. z o. o.

Table of Contents

1 Introduction ... 5

1.1 Purpose, scope and content.. 5

1.2 Project motivation and objectives ... 5

2 Applicable and reference documents ... 6

2.1 Applicable documents ... 6

2.2 Reference documents .. 6

3 Terms, definitions and abbreviated terms.. 7

4 Conventions ... 8

5 Purpose of the Software... 9

5.1 CTESW ... 9

5.2 CTSSW .. 9

6 External view of the software .. 10

6.1 CTESW ... 10

6.2 CTSSW .. 11

7 Operations environment .. 12

7.1 General .. 12

7.2 Hardware configuration ... 12

7.3 Software configuration .. 13

7.4 Operational constraints .. 13

8 Operations basics ... 14

9 Operations manual ... 15

9.1 General .. 15

9.2 Set‐up and initialization ... 15

9.2.1 Obtaining source .. 15

9.2.2 Setting up the environment .. 15

9.2.3 Configuration ... 16

9.2.4 Checking the configuration ... 18

9.3 Getting started ... 18

9.4 Mode selection and control ... 18

9.5 Normal operations ... 18

9.6 Normal termination ... 19

9.7 Error conditions ... 20

9.8 Recover runs .. 20

10 Reference manual .. 21

ECSS-E-ST-50-15C Protocol On-Board SW Implementation Doc. CAN-N7S-UM-21002

Test Suite – Software User Manual Date: 2021-11-26

 Issue: 1.3

N7 Space Sp. z o.o. Page: 3 of 29

Copyright 2022 N7 Space Sp. z o. o.

10.1 Introduction ... 21

10.2 Help method .. 21

10.3 Screen definitions and operations .. 21

10.4 Commands and operations .. 21

10.5 Error messages .. 23

11 Tutorial .. 25

11.1 Introduction ... 25

11.2 Getting started ... 25

11.3 Using the software on a typical task .. 25

11.3.1 Add new test to CTSSW.. 25

12 Analytical Index .. 28

13 Lists ... 29

13.1 List of Tables ... 29

13.2 List of Figures ... 29

13.3 List of Listings ... 29

ECSS-E-ST-50-15C Protocol On-Board SW Implementation Doc. CAN-N7S-UM-21002

Test Suite – Software User Manual Date: 2021-11-26

 Issue: 1.3

N7 Space Sp. z o.o. Page: 4 of 29

Copyright 2022 N7 Space Sp. z o. o.

Change Record

Issue Date Change

1.0 2021-06-28 Initial release

1.1 2021-10-17 Fixes for CDR RIDs:

• word ‘optional’ replaced with ‘alternative’ in some sentences

• Captions added to all code listings

• Explicit mention the Ubuntu 20.04 as the reference system

• RD8 reference changed to SCons user manual

• 9.2.1. – added note about git submodules

1.2 2021-11-18 • Updated referenced documents’ versions (for v3.1.3)

1.3 2021-11-26 • Updated referenced documents’ versions (for v3.2.0)

ECSS-E-ST-50-15C Protocol On-Board SW Implementation Doc. CAN-N7S-UM-21002

Test Suite – Software User Manual Date: 2021-11-26

 Issue: 1.3

N7 Space Sp. z o.o. Page: 5 of 29

Copyright 2022 N7 Space Sp. z o. o.

1 Introduction

1.1 Purpose, scope and content

This document provides Software User Manual for the CANopen SW Test Environment (CTESW) and

the CANopen SW Test Suite (CTSSW). Those software items provide means to perform validation tests

of the CANopen SW Library (CANSW) from CANDP.

The following introduction provides a short description of the project objectives.

The CTSDP Software User Manual is produced as a standalone document and structured according to

the SUM Document Requirements Definition (DRD) given in Annex H of ECSS-E-ST-40C.

1.2 Project motivation and objectives

The use of CAN bus as the main intra-spacecraft communication interface is likely to increase in the

coming years. The MIL-STD-1553 standard, which still is one of the most popular interfaces for

communication links, has major drawbacks that make it expensive to use or unsuitable for smaller crafts.

One such drawback is the complexity of the physical layer. In contrast, the CAN bus is characterized by

markedly lower power consumption, design simplicity and reduced complexity, which in turn impacts

the size of controller components. With this shift a need arises for a reliable software framework that

will allow application software to efficiently exchange data over the bus.

Another reason for the increase in CAN bus-based solutions usage in space applications is the

availability of various tools and devices due to ubiquity of CAN related protocols in other industries,

mainly automotive and automation. The fairly young ECSS-E-ST-50-15C extension standard does not

yet have a mature ecosystem compared both to the CAN-specific domains as well as other space

standards. Creating an open source library will help the space industry as a whole to develop and

maintain a reusable CAN-based toolset dedicated for space applications. Starting from an existing

library is a way to exploit the experience of other industries and to create a dependable library at a

possibly lower cost. Because of that, comparison and verification of applicability of available open

source CANopen libraries is an important entry task in this study. As a result of that task, a library should

be selected as a base of further development.

The ECSS-E-ST-50-15C standard extends the basic CANopen protocol with new features, so the

functionality of the selected library will have to be extended. The preferred approach to creating a lasting

solution involves providing contributions to an existing open-source project and retaining a single code

base. Keeping a single code base would be an important asset, making maintenance more effective and

further improvement of the selected library easier in the future. As such, this activity shall involve

reaching out to the communities involved in the development of the analysed libraries.

Software dedicated for space industry needs to adhere to strict reliability and safety standards. One of

the technical objectives of this activity is to apply proper verification and validation procedures to the

selected library required by Category B in accordance with ECCS standards. Library verification process

will include using automated tools to statically check correctness of the source code, the coding standard

applied, coverage of tests, etc.; those elements should preferably become a part of the normal

development process. From potential library’s user’s point of view, a set of tests to be performed on the

target platform is required to check if the library is operating properly on the chosen devices. Those tests

should form a validation suite and should be created as a part of this activity, together with a complete

test environment needed for their execution.

ECSS-E-ST-50-15C Protocol On-Board SW Implementation Doc. CAN-N7S-UM-21002

Test Suite – Software User Manual Date: 2021-11-26

 Issue: 1.3

N7 Space Sp. z o.o. Page: 6 of 29

Copyright 2022 N7 Space Sp. z o. o.

2 Applicable and reference documents

2.1 Applicable documents

ID Title Reference Rev.

AD1 ECSS – Space engineering

Software

ECSS-E-ST-40C 6 March 2009

AD2 ECSS – CANbus extension protocol ECSS-E-ST-50-15C 1 May 2015

2.2 Reference documents

ID Title Reference Rev.

RD1 CANopen Application Layer and

Communication Profile,

CAN in Automation

CiA 301 Version 4.2.0

RD2 CANopen electronic data sheet

specification

CiA 306 Version 1.3.0

RD3 ECSS-E-ST-50-15C Protocol

On-Board SW Implementation

Test Suite -

Interface Control Document

CAN-N7S-IF-20002 1.5

RD4 ECSS-E-ST-50-15C Protocol

On-Board SW Implementation

Test Suite –

Software Requirements Specification

CAN-N7S-RS-20003 1.2

RD5 ECSS-E-ST-50-15C Protocol

On-Board SW Implementation

Test Suite –

Software Design Document

CAN-N7S-DD-20002 1.5

RD6 ECSS-E-ST-50-15C Protocol

On-Board SW Implementation

Test Suite –

Software Configuration File

CAN-N7S-TN-20002 1.6

RD7 ECSS-E-ST-50-15C Protocol

On-Board SW Implementation

HWTB User Manual

CAN-MA-911-001-BDS 1.0

RD8 SCons: A software construction tool https://scons.org/doc/4.1.0

.post1/HTML/scons-

user.html

https://scons.org/doc/4.1.0.post1/HTML/scons-user.html
https://scons.org/doc/4.1.0.post1/HTML/scons-user.html
https://scons.org/doc/4.1.0.post1/HTML/scons-user.html

ECSS-E-ST-50-15C Protocol On-Board SW Implementation Doc. CAN-N7S-UM-21002

Test Suite – Software User Manual Date: 2021-11-26

 Issue: 1.3

N7 Space Sp. z o.o. Page: 7 of 29

Copyright 2022 N7 Space Sp. z o. o.

3 Terms, definitions and abbreviated terms

This document acronyms and abbreviations are listed here under.

BDS BD Sensors

CAN Controller Area Network

CANDP Technical Data package for the CANopen SW Library

CANSW CANopen SW Library

CLI Command-Line Interface

CTESW CANopen SW Test Environment

CTSDP Technical Data package for the CANopen Test Suite

CTSSW CANopen SW Test Suite

HWTB Hardware Test Bench

N7S N7 Space

ECSS-E-ST-50-15C Protocol On-Board SW Implementation Doc. CAN-N7S-UM-21002

Test Suite – Software User Manual Date: 2021-11-26

 Issue: 1.3

N7 Space Sp. z o.o. Page: 8 of 29

Copyright 2022 N7 Space Sp. z o. o.

4 Conventions

This Software User Manual describes a software project, therefore it refers to various commands that

can be executed in the terminal and it presents various source code fragments. In order to make those

special blocks more readable, numerous style conventions are used. This chapter quickly summarizes

said conventions.

Short commands and code fragments that are embedded inside normal text paragraphs use this

style with a monospace font.

Commands that are a bit longer or span multiple lines follow the following style:

$ command
Output (optional)

All commands listed in this manual were prepared and validated on Ubuntu 20.04 system. Any similar

Linux system should support all of the commands, it is recommended to use Ubuntu/Debian family.

Directory contents listings follow the same convention:

include/

└── subfolder/

 └── file

lib/

└── a generic comment about contents of lib/

share/

C language source code blocks use the below style:

co_nmt_t* nmt_service = co_nmt_create(network, device);
assert(nmt_service != NULL); // must be non-null

Python language source code blocks use the below style:

nmt = co.nmt(network, device)
assert nmt != None # must be not None

The syntax highlighting colours used in the above block are defined as follows:

C Preprocessor directive

C Preprocessor include path

Keywords

NULL
None

Number literal

String literal

Comments

Other

ECSS-E-ST-50-15C Protocol On-Board SW Implementation Doc. CAN-N7S-UM-21002

Test Suite – Software User Manual Date: 2021-11-26

 Issue: 1.3

N7 Space Sp. z o.o. Page: 9 of 29

Copyright 2022 N7 Space Sp. z o. o.

5 Purpose of the Software

CTSDP - Technical Data package for the CANopen Test Suite – contains two software items:

• CTESW - CANopen SW Test Environment.

• CTSSW- CANopen SW Test Suite

The main purpose of those items is to provide validation environment and tests for the CANSW –

CANopen SW Library, an ECSS-compliant [AD2] C language library providing CANopen [RD1]

protocol stack software implementation.

5.1 CTESW

Purpose of the CTESW is to provide a framework for defining, building and executing tests needed to

validate CANSW. The tests need to execute on two machines connected with CAN buses. One machine

is called Host and is the primary driver of the test – the machine user executing tests directly interacts

with. The second machine is called HWTB (Hardware Test Bench) and is a space-grade embedded

system representative, with dedicated CAN peripherals. Host machine has x86-64 architecture, HWTB

is based on SAM V71 ARM development board.

From the point of view of the user, CTESW provides two main components:

• Plugins for the SCons [RD8] build tool, allowing for convenient definition of the test, building

and executing it in a well-designed and user-friendly tool.

• C language library for helping defining applications used by the test.

5.2 CTSSW

CTSSW provides set of validation tests for the CANSW. It is built upon CTESW and uses it to build

and execute those tests. Provided tests cover all requirements extracted from ECSS standard for the

CANopen protocol stack.

ECSS-E-ST-50-15C Protocol On-Board SW Implementation Doc. CAN-N7S-UM-21002

Test Suite – Software User Manual Date: 2021-11-26

 Issue: 1.3

N7 Space Sp. z o.o. Page: 10 of 29

Copyright 2022 N7 Space Sp. z o. o.

6 External view of the software

Both software items are delivered as archive containing source files, build system configuration files

and CANSW version under test. For user convenience CTSSW archive embeds CTESW deliverable,

but user can replace it with different version if necessary. User can interact with CTSSW and CTESW

via command-line interface (CLI) of the SCons tool [RD8].

Details on the composition of the software items, versions etc. can be found in data-pack software

configuration file – CANDP-SCF [RD6].

6.1 CTESW

The CTESW directory structure can be described as follows:

CTESW/

├── configs/

│ └── CTESW configuration files (HTWB addresses etc.)

├── docker/

│ └── Dockerfile – CTESW environment container definition

├── resources/
│ ├── LibCANopen/

│ │ └── lely-core/ - CANSW repository copy

│ ├── SAMV7-BSP/

│ │ └── HWTB Board Support Package headers and source files

│ └── TestFramework/

│ ├── HAL/
│ │ ├── Arm/

│ │ │ └── Hardware Abstraction Layer implementation for HWTB

│ │ └── x86/

│ │ └── Hardware Abstraction Layer implementation for Host

│ └── Test Framework headers and source files
├── site_scons/

│ ├── site_tools/

│ │ ├── libs/

│ │ │ └── Python utilities to be used by SCons plugins

│ │ └── SCons plugins sources

│ └── site_init.py – SCons tool extension point
├── tests/

│ ├── design-reviews.json – results of design review validation process

│ ├── inspection-results.json – results of inspection validation process

│ └── CTESW integration tests sources

├── ctsdp-srs.json – CTESW and CTSSW requirements
└── SConstruct – SCons main definition file for the CTESW

ECSS-E-ST-50-15C Protocol On-Board SW Implementation Doc. CAN-N7S-UM-21002

Test Suite – Software User Manual Date: 2021-11-26

 Issue: 1.3

N7 Space Sp. z o.o. Page: 11 of 29

Copyright 2022 N7 Space Sp. z o. o.

6.2 CTSSW

The CTSSW directory structure can be described as follows:

CTSSW/

├── configs/ -> environment/configs (symbolic link)
├── environment/

│ └── Copy of the CTESW code

├── resources/ -> environment/resources (symbolic link)

├── site_scons/ -> environment/site_scons (symbolic link)

├── tests/

│ ├── ci-traces/

│ │ └── Notes for CANSW requirements validated via CTSSW CI

│ ├── dcf2dev/

│ │ └── dcf2dev validation tests

│ ├── ecss-time/

│ │ └── CANSW ECSS TIME support validation tests

│ ├── emcy/
│ │ └── CANSW EMCY service validation tests

│ ├── nmt/

│ │ └── CANSW NMT service validation tests

│ ├── pdo/

│ │ └── CANSW PDO service validation tests

│ ├── sdo/
│ │ └── CANSW SDO service validation tests

│ ├── sync/

│ │ └── CANSW SYNC service validation tests

│ ├── design-reviews.json – results of CANSW design review (validation)

│ └── inspection-results.json – results of CANSW inspections (validation)

├── candp-srs.json – CANSW requirements

├── candp-sss.json – ECSS standard requirements for CANSW (for SRS tracing)
└── SConstruct - SCons main definition file for the CTSSW

ECSS-E-ST-50-15C Protocol On-Board SW Implementation Doc. CAN-N7S-UM-21002

Test Suite – Software User Manual Date: 2021-11-26

 Issue: 1.3

N7 Space Sp. z o.o. Page: 12 of 29

Copyright 2022 N7 Space Sp. z o. o.

7 Operations environment

7.1 General

CANSW validation requires two machines connected with two CAN buses. The first machine, called

Host, must be an x86-64 machine running Linux operating system with preinstalled required software

(see section 7.3). It also has JTAG and CAN-USB dongles connected to its USB ports and their drivers

properly installed. If direct connection to USB ports is troublesome – a proxy machine can be used,

which will forward JTAG and CAN messages via Ethernet. Such configuration also allows Host to

become embedded as Docker container, which greatly simplifies software configuration process. See

next section for better description of supported hardware configuration.

The second machine required for the validation is called HWTB and it is a dedicated, SAM V71 ARM

based device, with CAN peripheral. It was developed for this project specific needs, but it is based on

standard development board and should be fairly simply replaceable.

7.2 Hardware configuration

Figure 1 presents general overview of hardware configuration required to execute tests using CTESW

(so all tests from CTSSW). This was the configuration used in the activity. It requires additional proxy

(as simple as Raspberry PI on the figure) to handle USB drivers for CAN and JTAG dongles, but as a

benefit all other software items can be embedded inside Docker container and easily updated during the

scope of the project, or reproduced on a different machine.

HWTB manual can be found in [RD7].

Figure 1 – CTSSW Docker based hardware configuration.

Figure 2 presents alternative configuration, which does not require any proxy – all peripherals are

directly connected to physical machine. It requires proper permissions on the Linux machine and proper

configuration of all software items on that machine.

Figure 2 – CTSSW hardware configuration with dedicated physical machine.

ECSS-E-ST-50-15C Protocol On-Board SW Implementation Doc. CAN-N7S-UM-21002

Test Suite – Software User Manual Date: 2021-11-26

 Issue: 1.3

N7 Space Sp. z o.o. Page: 13 of 29

Copyright 2022 N7 Space Sp. z o. o.

7.3 Software configuration

CANSW (SW Under Test) is embedded inside CTESW. CTESW itself is embedded inside CTSSW.

This makes CTSSW a standalone application.

Embedded versions must be compatible – so CANSW in version 3.1.x is embedded in CTESW 3.1.x

and CTSSW 3.1.x. Delivered packages have all items in proper versions, but user might want to choose

a different setup.

CTESW and CTSSW are delivered in the form of source files, so they require proper configuration of

the operating system to build and execute tests. Table 1 lists required software for CTSSW/CTESW

build and execution. Simplest approach is to provide only a Docker on Linux and reproduce environment

using the container provided with CTESW (as Dockerfile – configuration file and whole image).

Table 1 – CTSSW execution SW environment.

Tool Version Purpose

Container environment

Docker 19.03.12 Container manager. CTSDP includes image

containing all other tools from this table.

Ubuntu 20.04 Operating system (or compatible)

Validation testing environment

Ubuntu 20.04 Operating system (or compatible)

gcc x86/x64 4.9.0

5.5.0

6.5.0

7.5.0

8.4.0

9.3.0

10.3.0

Supported GNU C Compiler versions for x86

compilation. Newest (10.x) version was used in

the validation activities and is included in

distributed Docker image.

gcc ARM arm-none-eabi-9-2020-q2-

update-x86_64-linux

GNU C Compiler for ARM platform.

Python 3.8.5 Python language interpreter (test scripts

executor)

Autotools autoreconf 2.69 Build system

SCons 4.1.0 Build system

CppUTest 4.0 Unit test library

paramiko 2.7.2 Python modules (PIP) used by the CTESW to

execute tests on the HWTB pygdbmi 0.9.0.3

pyserial 3.5

scp 0.13.3

timeout_decorator 0.5.0

cram 0.7 (Optional) Tool for testing CTESW CLI interface

7.4 Operational constraints

CTSSW and CTESW do not provide any operational modes. Only known constraint: due to nature of

CAN bus, only single set of tests can be executed at a given time at a given hardware (no parallel

connections can be made). So only a single call to CTESW/CTSSW connected to a given HW can be

made at once.

ECSS-E-ST-50-15C Protocol On-Board SW Implementation Doc. CAN-N7S-UM-21002

Test Suite – Software User Manual Date: 2021-11-26

 Issue: 1.3

N7 Space Sp. z o.o. Page: 14 of 29

Copyright 2022 N7 Space Sp. z o. o.

8 Operations basics

The main purpose of the CTSSW is to execute (using CTESW) set of validation tests of the CANSW.

This is the only operation supported by the CTSSW software. It is divided into smaller steps described

in the next chapter, but in general SW supports only one operation and mode - to perform tests.

User commanding is required for CTSSW to start execution. No user interaction is required during tests

execution, user needs only to check results when CTSSW finishes operation.

User interface is based on Command Line Interface (CLI) of the SCons tool [RD8].

ECSS-E-ST-50-15C Protocol On-Board SW Implementation Doc. CAN-N7S-UM-21002

Test Suite – Software User Manual Date: 2021-11-26

 Issue: 1.3

N7 Space Sp. z o.o. Page: 15 of 29

Copyright 2022 N7 Space Sp. z o. o.

9 Operations manual

9.1 General

CTESW is a framework for creating and running tests, user mostly interacts with CTSSW itself, hence

this chapter will focus on CTSSW operations. User is not expected to execute CTESW itself for any

other action then performing its self-tests.

9.2 Set‐up and initialization

9.2.1 Obtaining source

CTSSW source can be obtained by extracting delivered ZIP archive as in Listing 1.

Listing 1 – Unpacking CTSSW source from ZIP file.

$ unzip CAN-CTSDP-suite-src-v3_1_2.zip # assuming version 3.1.2

Or (recommended option on Linux as CTSSW uses symbolic-links) from TAR BZIP2 - Listing 2.

Listing 2 – Unpacking CTSSW source from TAR BZIP2 file (recommended for Linux).

$ tar -xvf unzip CAN-CTSDP-suite-src-v3_1_2.tar.bz2 # assuming version 3.1.2

Alternatively CTSSW source can be accessed using publicly available code repository by executing the

commands from Listing 3 (assuming version 3.1.2 of the CTSSW).

Listing 3 – Retrieving CTSSW source from GitLab.com repository.

$ git clone https://gitlab.com/n7space/canopen/test-suite.git --depth=1 --branch=v3.1.2

$ cd test-suite

$ git submodule update --recursive --init

Important note: Git repository of CTSSW uses git submodules to reference CTESW repository and

CTESW has CANSW in submodule. Hence the additional command in Listing 3. It also impacts the

behaviour of delivered archives - *-src-*.tar.bz2 archives contain full source (and is default

deliverable of the project), including all submodules, but *-git-*.tar.bz2 (delivered as

documentation of software development process) contains only a snapshot of the Git repository, so

submodules must be obtained separately (either by performing proper git command or by unpacking

required archives).

9.2.2 Setting up the environment

Using Docker is the easiest way to reproduce necessary software environment. Otherwise user needs to

install all dependencies from Table 1, using operating-system specific packages, which is out of the

scope of this document.

Listing 4 uses the Docker image provided as deliverable (it might take minutes to perform the import).

Listing 4 – Importing CTESW Docker image.

$ docker image load --input CAN-CTSDP-docker-v3_1_2.tar.bz2

Loaded image: ctesw:v3.1.2

ECSS-E-ST-50-15C Protocol On-Board SW Implementation Doc. CAN-N7S-UM-21002

Test Suite – Software User Manual Date: 2021-11-26

 Issue: 1.3

N7 Space Sp. z o.o. Page: 16 of 29

Copyright 2022 N7 Space Sp. z o. o.

Alternatively, image can be built „from scratch” (assuming all packages are still available) using

Dockerfile provided in CTSSW source, as in Listing 5.

Listing 5 – Building CTESW Docker image.

$ cd <path/to/ctssw/source>/environment/docker

$ docker build -t ctesw:v3.1.2 . # assuming version 3.1.2

User might also download image directly from publicly available Docker container registry, by

providing registry.gitlab.com/n7space/canopen/test-environment:v3.1.2 as

the image name to docker run command.

After setting up the image, user might use Docker containers as in Listing 6.

Listing 6 – Executing command in CTESW Docker container.

$ docker run --rm -v $PWD:$PWD -w $PWD -u $(id -u):$(id -g) ctesw:v3.1.2 <COMMAND>

This command will mount current directory and execute container with privileges of current user. It is

recommended to call it this way always in the root of the CTSSW source directory.

It can be very convenient to set up this command as an alias in Linux shell as in Listing 7. This will

allow for a quick execution of other commands inside containers.

Listing 7 – Shell alias for executing command in CTESW Docker container.

$ alias docker-here='docker run --rm -v $PWD:$PWD -w $PWD -u $(id -u):$(id -g)'

For example, to check correctness of the image and CTSSW source, user might execute commands like

in Listing 8 (or without alias as in Listing 9) and expect similar output.

All following commands in this chapter assume that there are either executed on properly configured

environment, or are proceeded with docker run / alias.

Listing 8 – Example command executed in CTESW Docker container.

$ cd <path/to/ctssw/source>

$ docker-here scons -h

scons: Reading SConscript files ...

...

... other help lines ...

...

CTSSW - CANopen SW Library Test Suite - v3.1.2

Licensed under European Space Agency Public License (ESA-PL) Permissive – v2.3

Copyright N7 Space sp. z o.o. 2020-2021

...

Listing 9 – Example command executed in CTESW Docker container.

$ cd <path/to/ctssw/source>

$ docker run --rm -v $PWD:$PWD -w $PWD -u $(id -u):$(id -g) ctesw:v3.1.2 scons -h

same output as in Listing 8

9.2.3 Configuration

CTSSW needs to be configured to correctly work in a given hardware configuration. Configuration is

stored in INI file, some examples are available in configs/ subdirectory. By default

ECSS-E-ST-50-15C Protocol On-Board SW Implementation Doc. CAN-N7S-UM-21002

Test Suite – Software User Manual Date: 2021-11-26

 Issue: 1.3

N7 Space Sp. z o.o. Page: 17 of 29

Copyright 2022 N7 Space Sp. z o. o.

default_sdram.conf file is loaded, but user might prefer to choose a different one when calling

CTSSW. Listing 10 provides contents of an example configuration file.

Listing 10 – CTESW configuration file example (default_sdram.conf).

[gdb]

address = canopen-rpi:2331

path = gdb-multiarch

verbose = True

[gdbServer]

address = canopen-rpi

username = pi

password = emeraldpi

path = /opt/JLink_Linux_V680d_arm/JLinkGDBServer

args = -select USB -device ATSAMV71Q21 -endian little -if swd -speed 4000 -noir -vd -timeout 2000

verbose = False

[ioHandlerType]

ioHandlerType = sdram

[sdramIoHandler]

address = canopen-rpi

username = pi

password = emeraldpi

path = /opt/JLink_Linux_V680d_arm/JLinkExe

device = ATSAMV71Q21

speed = 4000

interface = SWD

dataAddress = 0x70000000

[canBusA]

address = canopen-rpi

username = pi

password = emeraldpi

ipLinkCanId = can0

socatPort = 6500

mcanId = 0

verbose = True

[canBusB]

address = canopen-rpi

username = pi

password = emeraldpi

ipLinkCanId = can1

socatPort = 6600

mcanId = 1

verbose = False

Highlighted lines are usually the only ones requiring user attention. They contain address and credentials

needed to access the proxy connected to HWTB. In configuration without proxy, localhost needs to

be provided as address (username and password are not necessary then). Other options require

changing only when operating with different hardware configuration than HWTB.

ECSS-E-ST-50-15C Protocol On-Board SW Implementation Doc. CAN-N7S-UM-21002

Test Suite – Software User Manual Date: 2021-11-26

 Issue: 1.3

N7 Space Sp. z o.o. Page: 18 of 29

Copyright 2022 N7 Space Sp. z o. o.

9.2.4 Checking the configuration

After setting up and configuring CTSSW and HWTB it is recommended to validate the configuration

by running CTESW self-tests. This requires optional cram tool to be present (available in the CTESW

Docker image). Those tests use the default_sdram.conf configuration file and perform various

checks of the CTESW setup. They are expected to take 20 – 90 min (depending on the Host hardware).

To execute them, go to CTESW subdirectory in CTSSW and execute commands (for example inside

environment provided by the Docker image) from Listing 11 and expect similar output.

Listing 11 – Commands to execute CTESW validation tests.

$ cd <path/to/ctssw/source>/environment

$./run-cram.sh

…

ALL TESTS PASSED!

Any other message than ALL TESTS PASSED! means that CTESW or HWTB is not setup or

configured properly and requires investigation. Logs from tests execution can be found in

environment/build/release/tests subdirectory. Reading messages provided in those logs

should help diagnose the issue. Most probable problems are the ones related to connection configuration

and access to proxy.

After making changes to the CTSSW configuration, re-execution of tests is recommended. It is highly

recommended to remove environment/build/release/tests subdirectory before running

the tests again (or at least subfolder containing output of the failing test).

To help investigation run-cram.sh script accepts as an argument the list of test paths to run, so not

all tests needs to be re-run each time.

9.3 Getting started

After setting up and validating the CTESW as described in previous section, there are no other actions

to be performed – user can execute the CANSW test suite.

9.4 Mode selection and control

N/A

9.5 Normal operations

Execution of the whole test suite is simply done by calling the SCons tool - Listing 12.

Listing 12 – Commands to execute CTSSW validation tests.

$ cd <path/to/ctssw/source>/

$ scons

Or by using Docker - Listing 13.

Listing 13 – Commands to execute CTSSW validation tests inside Docker containter.

$ cd <path/to/ctssw/source>/

$ docker run --rm -v $PWD:$PWD -w $PWD -u $(id -u):$(id -g) ctesw:v3.1.2 scons

ECSS-E-ST-50-15C Protocol On-Board SW Implementation Doc. CAN-N7S-UM-21002

Test Suite – Software User Manual Date: 2021-11-26

 Issue: 1.3

N7 Space Sp. z o.o. Page: 19 of 29

Copyright 2022 N7 Space Sp. z o. o.

For clarity, further commands examples will no longer include docker run ... prefix, it is up to

the user to choose how the scons command is called.

The default execution assumes that configs/default_sdram.conf configuration file is used,

but user can pass a different one - Listing 14.

Listing 14 – Passing CTESW configuration file to test execution.

$ scons config=<path/to/conf/file>

To speed up the tests execution process, on multi-core platforms it is recommended to compile

applications used by the tests before executing the tests themselves. This can be achieved by passing

special target to the SCons (test-cases-apps) and selecting desired parallel jobs count. For

example, Listing 15 uses 10 parallel jobs.

Listing 15 – Building scons target using multiple jobs.

$ scons -j 10 test-cases-apps

(if user selects different config – it needs to be passed to that command too).

Tests themselves can be executed in a parallel fashion (-j option other than 1).

SCons by default terminates the execution at the first occurrence of error. If user wants to try to perform

all tests, even if some of them fail, the -k switch should be added to the scons call.

Test execution can take 40 – 120 minutes, depending on the Host hardware.

During the execution SCons prints logs of the performed operation (including build commands, GDB

commands, CAN bus data exchange, etc.). If log needs to be archived it is recommended to use tee

command, to keep seeing progress on the standard output - Listing 16.

Listing 16 – Using tee to observe and store build logs at the same time.

$ scons 2>&1 | tee ctssw.log

9.6 Normal termination

After all tests pass, the call to scons should end with 0 (zero) return code and the message:

scons: done building targets.

If that message is not present near the end of the output (it might be followed with some clean-up

messages, depending on the network speed) something went wrong and not all tests have passed.

Logs from execution of the tests can be found in build/release/tests subfolder. Each test

produces the following logs:

• Output from application executed on Host (<test name>.host.log),

• Output from application executed on HWTB (<test name>.hwtb.log),

• CAN messages exchanged on bus A (<test name>.can-a.log),

• CAN messages exchanged on bus B (<test name>.can-b.log),

• Dummy file present only when the test passes (<test name>.log).

ECSS-E-ST-50-15C Protocol On-Board SW Implementation Doc. CAN-N7S-UM-21002

Test Suite – Software User Manual Date: 2021-11-26

 Issue: 1.3

N7 Space Sp. z o.o. Page: 20 of 29

Copyright 2022 N7 Space Sp. z o. o.

Test name is in the form: <test case name>-<direction> where direction is either

host-to-hwtb or hwtb-to-host. This is caused by each test case being “symmetrical” so each

test application is executed once on Host and once on HWTB. This means that each test case specified

in CTSSW is executed twice during the test suite run.

9.7 Error conditions

In case of any test failure the call to scons should end with non-zero return code and the message:

scons: building terminated because of errors.

It should be preceded with one or more messages like:

scons: *** [build/release/tests/<test name>/<log file name>] Error <error code>

It is a suggestion where to look for the error information. Error code is platform dependent and should

not be investigated. Logs should be available for investigation – see previous section for details.

In case of an error on earlier stage (build, linking etc.) error message should be present directly in the

SCons output.

9.8 Recover runs

Before re-running the tests it is recommended to remove build/release/tests folder. Or at least

its subfolder containing output from the failing test. In the latter case SCons will try to execute only the

tests that were not successful. User might also execute selected subset of tests by passing their names as

targets to scons call (removing output from failing test still might be necessary).

ECSS-E-ST-50-15C Protocol On-Board SW Implementation Doc. CAN-N7S-UM-21002

Test Suite – Software User Manual Date: 2021-11-26

 Issue: 1.3

N7 Space Sp. z o.o. Page: 21 of 29

Copyright 2022 N7 Space Sp. z o. o.

10 Reference manual

10.1 Introduction

All information necessary to execute CTSSW test suite and to validate CANSW can be found in section

9. This chapter provides some helpful information if user would like to customize the execution process

or debug problems.

Detailed reference of all available functions of the CTESW can be found in the CTSDP ICD [RD3].

Details on using SCons can be found in its documentation – [RD8].

10.2 Help method

CTSSW and CTESW provide simple help method, available when calling scons -h in root folder of

the selected software. As shown below, it lists available options and their current options:

$ scons -h

scons: Reading SConscript files ...

Mkdir("build/release")

scons: done reading SConscript files.

config: Test Environment configuration file. (/path/to/config)

 default: configs/default_sdram.conf

 actual: configs/default_sdram.conf

build: Defines build type (release|debug|coverage)

 default: release

 actual: release

remoteJobTimeout: Timeout in seconds for remote job to end (GDB, log, etc.)

 default: 900

 actual: 900

CTSSW - CANopen SW Library Test Suite - v3.1.0

Licensed under European Space Agency Public License (ESA-PL) Permissive – v2.3

Copyright N7 Space sp. z o.o. 2020-2021

Use scons -H for help about command-line options.

Last line of the above message informs user about a way of getting SCons general options:

$ scons -H

10.3 Screen definitions and operations

N/A

10.4 Commands and operations

Basic commands are provided in section 9.5. As mentioned there, CTSSW provides only a single

command – scons – and it is all that is needed to perform the suite. User might want to execute a single

ECSS-E-ST-50-15C Protocol On-Board SW Implementation Doc. CAN-N7S-UM-21002

Test Suite – Software User Manual Date: 2021-11-26

 Issue: 1.3

N7 Space Sp. z o.o. Page: 22 of 29

Copyright 2022 N7 Space Sp. z o. o.

test, this can be achieved by passing its name to SCons like scons test-name. List of all test names

can be obtained from CANSW documentation, or by calling scons traces and browsing JSON file

build/release/cansw-traces.json containing list of all available tests along with their

documentation. SCons also accepts some switches that change the way the test suite is executed, see

Table 2 for details.

Table 2 – CTSSW SCons options.

Option Description

CTSSW specific

config Path to configuration file, as described in 0. Detailed options available in Table

3.

build One of release/debug/coverage. In normal test run only release

should be used. Debug mode can be used to build application if detailed

debugging is needed (but test might fail in this mode due to performance

degradation). Coverage mode could be used to obtain line and branch coverage

information, but in most cases it introduces too big execution and size overhead

– this mode is recommended only for CTESW developers.

remoteJobTimeout Timeout for each operation using HWTB. Might need to be extended in case

of some poor network performance.

Generic SCons options

-k “Keep going” – continue execution after error occurrence. Useful to gather

information about all failing tests.

-j <N> Execute in N parallel jobs. See notes in 9.5. Do not use for executing tests.

--debug=explain SCons will display the reason for rebuilding a given target. Useful while

debugging failing tests or while developing a new tests.

Table 3 – CTSSW configuration file options.

Option Description

[gdb]

address Address of GDB Server to connect to.

path Path to GDB executable.

verbose True/False – When set, GDB will include additional information in SCons

log (recommended).

[gdbServer]

address Address of the proxy to run GDB Server on, or localhost to run locally.

username Credentials required to access proxy via SSH.

password
path Path on the proxy (or local) to GDB Server executable.

args GDB Server executable command line arguments.

verbose True/False – When set, GDB server will include additional information in

SCons log (not recommended, usually all interesting information is reported

by GDB, setting to true might slow down proxy operations).

[ioHandlerType]

ioHandlerType Selection of the way tests applications should handle their standard output:

• sdram – Standard output stored in SDRAM memory region, options

available in sdramIoHandler section,

• uart – Standard output sent using UART connected to USB dongle,

options available in uartIoHandler section,

ECSS-E-ST-50-15C Protocol On-Board SW Implementation Doc. CAN-N7S-UM-21002

Test Suite – Software User Manual Date: 2021-11-26

 Issue: 1.3

N7 Space Sp. z o.o. Page: 23 of 29

Copyright 2022 N7 Space Sp. z o. o.

Option Description

• usb – Standard output sent using UART over USB HWTB interface,

options available in uartIoHandler section.

During CANSW validation the SDRAM option is used by default, to limit

necessary links to the HWTB. It’s biggest disadvantage is lack of live feedback

from the application. UART based solutions are recommended for debugging.

[sdramIoHandler]

address Address of the proxy to run JLink server, or localhost to run locally.

username Credentials required to access proxy via SSH.

password
path Path on the proxy (or local) to JLink executable.

device JLink executable arguments (used to access memory).

speed
interface
dataAddress Address of the memory buffer to be used for standard output.

[uartIoHandler]

address Address of the proxy to access connected UART device / dongle, or

localhost to access locally.

username Credentials required to access proxy via SSH.

password
baudrate Baudrate of the UART link.

port Port to be used by socat to make UART available over Ethernet. Used even

when setup locally.

path Path to UART device on the proxy (or local) – e.g /dev/ttyACM0

verbose True/False – When set, UART output is directly visible in the SCons log,

before being saved to the log file.

uartId UART device id on HWTB (uart mode only).

[canBusA]/[canBusB]

address Address of the proxy to run socat CAN forwarder, or localhost to run

locally.

username Credentials required to access proxy via SSH.

password
ipLinkCanId Linux CAN interface id (ip link command) to be used by given bus.

Identifier must be present on the proxy (or locally).

socatPort Port to be used by socat to make CAN available over Ethernet. Used even

when setup locally.

mcanId MCAN device identifier to be used by given bus on the HWTB.

verbose True/False – When set, CAN traffic is visible in SCons log. Recommended

for default bus (A), not recommended to set for both buses at once (log

becomes unreadable).

10.5 Error messages

As described in 9.7, SCons provides a single type of message when the command execution failed. To

investigate the reason of the failure, user must look through previous log messages from SCons, or into

detailed logs provided by the test itself. Messages in SCons log can include messages from operating

system (regarding network connection problems), used application (GCC compilation problems, GDB

errors etc.) and tests themselves.

ECSS-E-ST-50-15C Protocol On-Board SW Implementation Doc. CAN-N7S-UM-21002

Test Suite – Software User Manual Date: 2021-11-26

 Issue: 1.3

N7 Space Sp. z o.o. Page: 24 of 29

Copyright 2022 N7 Space Sp. z o. o.

Messages provided in output logs from applications are test-specific (test’s author is free to provide any

message), but all are prefixed with timestamp since the test execution start and all logs should end with

message containing exit code of the application – if it’s missing, the application has crashed.

ECSS-E-ST-50-15C Protocol On-Board SW Implementation Doc. CAN-N7S-UM-21002

Test Suite – Software User Manual Date: 2021-11-26

 Issue: 1.3

N7 Space Sp. z o.o. Page: 25 of 29

Copyright 2022 N7 Space Sp. z o. o.

11 Tutorial

11.1 Introduction

Chapters 9 and 10 provide complete introduction to CTSSW usage, including a step-by-step tutorial.

This chapter is focusing on CTESW and provides information for the user who would want to create

new dedicated tests for the CANSW.

11.2 Getting started

CTESW is a framework for creating CANSW tests. It consists of two main components: SCons

extensions used to specify the test for the build tool and Test Framework – a C language library for

creating tests application that will use and validate CANSW features. This tutorial will show, how to

use those components to create user own test.

11.3 Using the software on a typical task

11.3.1 Add new test to CTSSW

11.3.1.1 Select folder for the test

This is the optional step, when the tests do not match any existing categories of tests. It is however a

recommended step for “project specific” tests.

All tests are stored inside tests/ CTSSW subdirectory. New folder needs to be added there. Then, it

needs to be added to the main SCons configuration file in the root CTSSW directory – SConstruct.

It already contains a list of used directories, new one needs to be added to it like in Listing 17. Then the

newly created folder needs its own SCons configuration file – SConscript, see Listing 18 for

example. It contents will be filled in the next stages of this tutorial.

Listing 17 – Example modification of SConstruct to add new tests folder.

tests = [

 "tests/dcf2dev",

 "tests/emcy",

 "tests/ecss-time",

 "tests/nmt",

 "tests/pdo",

 "tests/sdo",

 "tests/sync",

 "tests/NEW-TEST-FOLDER-NAME",

]

Listing 18 – Empty SConscript add for new tests.

Import("env")

tests = []

here the folder specific test will be added

env.Alias("NEW-TEST-GENERIC-NAME-tests", tests) # not required, suggested for convenience

Return("tests")

ECSS-E-ST-50-15C Protocol On-Board SW Implementation Doc. CAN-N7S-UM-21002

Test Suite – Software User Manual Date: 2021-11-26

 Issue: 1.3

N7 Space Sp. z o.o. Page: 26 of 29

Copyright 2022 N7 Space Sp. z o. o.

11.3.1.2 Define two device descriptions used by the test

This is an optional step – user might want to define device’s Object Dictionaries manually using

CANSW API. It is more convenient however to define them using DCF (Device Configuration File)

format from CiA 306 standard. DCF definition is out of the scope of this document. After preparing two

matching Object Dictionary definitions, with required services etc. configured, user should place two

.dcf files inside test folder.

11.3.1.3 Write C code of both test applications

Main test code will go inside C application, one running on Host, second on HWTB. Both should follow

the same scheme, shown in Listing 19.

Listing 19 – Example of C source file of new tests.

#ifdef HAVE_CONFIG_H

#include <config.h>

#endif

#include <lely/co/SERVICE-TO-BE-TESTED.h>

#include <TestFramework/TestHarness.h>

void

TestSetup(can_net_t *const net)

{

 // procedure called once, before the test start

 // should be used to initialize the service

 // Example:

 dev = dcf_sdo_abort_transfer_client_init(); // code from DCF file

 csdo = co_csdo_create(net, dev, SDO_NUM);

 if (co_csdo_start(csdo) != 0)

 FAIL_TEST("SSDO service start failed");

}

void

TestTeardown(void)

{

 // procedure called once, after the test finishes

 // should be used to clean up services

 // Example:

 co_csdo_stop(csdo);

 co_csdo_destroy(csdo);

}

void

TestMessageReceived(const struct can_msg *const msg)

{

 // Procedure called for each received message on CAN bus A.

 // It is called after lely-core processed the message.

}

ECSS-E-ST-50-15C Protocol On-Board SW Implementation Doc. CAN-N7S-UM-21002

Test Suite – Software User Manual Date: 2021-11-26

 Issue: 1.3

N7 Space Sp. z o.o. Page: 27 of 29

Copyright 2022 N7 Space Sp. z o. o.

void

TestStep(void)

{

 // Procedure called in the loop while the test is performed.

 // Example:

 step++;

 if (step > STEP_COUNT)

 FINISH_TEST();

}

void

TestMessageSent(const struct can_msg *const msg)

{

 // Procedure called for each message sent by lely-core on CAN bus A.

}

11.3.1.4 Add test specification to SCons configuration

When all tests files are ready, user must add them to proper SConscript – either existing one or the

newly created one from 11.3.1.1.

Inside it a template like it should be filled with proper names of the files – see Listing 20.

Listing 20 – Part of example SConscript with new test added.

dcfApp1 = env.Dcf2Dev("app1.dcf")

dcfApp2 = env.Dcf2Dev("app2.dcf")

tests += env.MakeSymmetricalTestCase(

 "NAME-OF-THE-TEST",

 ["app1.c"] + dcfApp1,

 ["app2.c"] + dcfApp2,

 trace={ # optional block of documentation, whole parameter can be omitted

 "title": "HUMAN READABLE TEST TITLE",

 "traces": ["REQUIREMENT-1", "REQUIREMENT-2"],

 "doc": {

 "given": "INPUTS",

 "when": "TESTED FEATURE",

 "then": "OUTPUTS",

 },

 },

)

11.3.1.5 Run the test

When the test specification is ready it is time to run it and see if everything is correct:

$ scons NAME-OF-THE-TEST

Execution should finish normally. Possible errors will be reported in SCons log.

ECSS-E-ST-50-15C Protocol On-Board SW Implementation Doc. CAN-N7S-UM-21002

Test Suite – Software User Manual Date: 2021-11-26

 Issue: 1.3

N7 Space Sp. z o.o. Page: 28 of 29

Copyright 2022 N7 Space Sp. z o. o.

12 Analytical Index

N/A

ECSS-E-ST-50-15C Protocol On-Board SW Implementation Doc. CAN-N7S-UM-21002

Test Suite – Software User Manual Date: 2021-11-26

 Issue: 1.3

N7 Space Sp. z o.o. Page: 29 of 29

Copyright 2022 N7 Space Sp. z o. o.

13 Lists

13.1 List of Tables

Table 1 – CTSSW execution SW environment. .. 13
Table 2 – CTSSW SCons options. .. 22
Table 3 – CTSSW configuration file options. ... 22

13.2 List of Figures

Figure 1 – CTSSW Docker based hardware configuration. .. 12
Figure 2 – CTSSW hardware configuration with dedicated physical machine. 12

13.3 List of Listings

Listing 1 – Unpacking CTSSW source from ZIP file. .. 15
Listing 2 – Unpacking CTSSW source from TAR BZIP2 file (recommended for Linux). 15
Listing 3 – Retrieving CTSSW source from GitLab.com repository. ... 15
Listing 4 – Importing CTESW Docker image. .. 15
Listing 5 – Building CTESW Docker image. .. 16
Listing 6 – Executing command in CTESW Docker container. .. 16
Listing 7 – Shell alias for executing command in CTESW Docker container. 16
Listing 8 – Example command executed in CTESW Docker container. .. 16
Listing 9 – Example command executed in CTESW Docker container. .. 16
Listing 10 – CTESW configuration file example (default_sdram.conf). 17

Listing 11 – Commands to execute CTESW validation tests. ... 18
Listing 12 – Commands to execute CTSSW validation tests. ... 18
Listing 13 – Commands to execute CTSSW validation tests inside Docker containter. 18
Listing 14 – Passing CTESW configuration file to test execution. ... 19
Listing 15 – Building scons target using multiple jobs. ... 19

Listing 16 – Using tee to observe and store build logs at the same time. ... 19

Listing 17 – Example modification of SConstruct to add new tests folder. 25

Listing 18 – Empty SConscript add for new tests. .. 25

Listing 19 – Example of C source file of new tests. .. 26
Listing 20 – Part of example SConscript with new test added. ... 27

	1 Introduction
	1.1 Purpose, scope and content
	1.2 Project motivation and objectives

	2 Applicable and reference documents
	2.1 Applicable documents
	2.2 Reference documents

	3 Terms, definitions and abbreviated terms
	4 Conventions
	5 Purpose of the Software
	5.1 CTESW
	5.2 CTSSW

	6 External view of the software
	6.1 CTESW
	6.2 CTSSW

	7 Operations environment
	7.1 General
	7.2 Hardware configuration
	7.3 Software configuration
	7.4 Operational constraints

	8 Operations basics
	9 Operations manual
	9.1 General
	9.2 Set‐up and initialization
	9.2.1 Obtaining source
	9.2.2 Setting up the environment
	9.2.3 Configuration
	9.2.4 Checking the configuration

	9.3 Getting started
	9.4 Mode selection and control
	9.5 Normal operations
	9.6 Normal termination
	9.7 Error conditions
	9.8 Recover runs

	10 Reference manual
	10.1 Introduction
	10.2 Help method
	10.3 Screen definitions and operations
	10.4 Commands and operations
	10.5 Error messages

	11 Tutorial
	11.1 Introduction
	11.2 Getting started
	11.3 Using the software on a typical task
	11.3.1 Add new test to CTSSW
	11.3.1.1 Select folder for the test
	11.3.1.2 Define two device descriptions used by the test
	11.3.1.3 Write C code of both test applications
	11.3.1.4 Add test specification to SCons configuration
	11.3.1.5 Run the test

	12 Analytical Index
	13 Lists
	13.1 List of Tables
	13.2 List of Figures
	13.3 List of Listings

